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Abstract—The synchronization model of the MPI one-sided
communication paradigm can lead to serialization and latency
propagation. For instance, a process can propagate non-RMA
communication-related latencies to remote peers waiting in their
respective epoch-closing routines in matching epochs. In this
work, we discuss six latency issues that were documented for
MPI-2.0 and show how they evolved in MPI-3.0. Then, we propose
entirely nonblocking RMA synchronizations that allow processes
to avoid waiting even in epoch-closing routines. The proposal
provides contention avoidance in communication patterns that
require back to back RMA epochs. It also fixes the latency
propagation issues. Moreover, it allows the MPI progress engine
to orchestrate aggressive schedulings to cut down the overall
completion time of sets of epochs without introducing memory
consistency hazards. Our test results show noticeable perfor-
mance improvements for a lower-upper matrix decomposition
as well as an application pattern that performs massive atomic
updates.

Keywords—MPI, one-sided, RMA, nonblocking synchroniza-
tions, latency propagation

I. INTRODUCTION

In the Message Passing Interface (MPI) [1], one-sided
communications, also called remote memory access (RMA),
must happen inside critical section-like regions called epochs.
An epoch is started by one of a set of RMA synchronization
calls and ended by a matching synchronization call. MPI-
2.0 RMA was criticized for its synchronization burden [2]
and various constraints that make it difficult to use in certain
situations. In that regard, MPI-3.0 represents an undeniable
and important improvement because it alleviates quite a few
of the aforementioned constraints and introduces many new
features for avoiding frequent synchronization invocations.
For instance, the introduction of the request-based one-sided
communications in MPI-3.0 RMA eliminates the need for the
communication initiator to always make a synchronization call
in order to detect RMA completion at the application level.
However, these improvements still leave out scenarios where
the synchronization burden cannot be avoided. For instance,
the request-based RMA communication calls are reserved for
only a certain category of epochs, called passive target. Even
in passive target epochs, the need arises sometimes to isolate
different communications in distinct epochs, for instance to
guarantee atomicity. Serialization thus becomes unavoidable
because epoch-ending routines are blocking. The possibly
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blocking nature of MPI one-sided communication synchroniza-
tions is actually the cause of six kinds of latency issues first
documented in [3] as MPI-2.0 RMA inefficiency patterns. Four
of these six inefficiency patterns were difficult to avoid or work
around. These latency issues are the consequence of late peers
propagating latencies to remote processes blocking on RMA
synchronizations.

In this work we address the synchronization burden by
making the one-sided communications nonblocking from start
to finish, if needed. Because the entire MPI-RMA epoch can
be nonblocking, MPI processes can issue the communications
and move on immediately. Conditions are thus created for
(1) enhanced communication/computation overlapping, (2) en-
hanced communication/communication overlapping, and (3)
delay propagation avoidance or mitigation via communica-
tion/delay overlapping. Our proposal solves all four ineffi-
ciency patterns, plus a fifth one introduced and documented
in this work. Additionally, the proposal allows various kinds
of aggressive communication scheduling meant to reduce the
overall completion time of multiple epochs initiated from the
same process. Our test results show up to 39% performance
improvement for a transactional application kernel and up to
50% improvement for a lower-upper matrix decomposition
RMA implementation. To the best of our knowledge, this work
represents the first attempt to remove all wait phases from the
lifetime of MPI RMA epochs.

The rest of the paper is organized as follows. Section II
discusses background material. Section III introduces the inef-
ficiency patterns. Section IV shows the impact of the work.
Section V presents the nonblocking synchronization API.
Section VI describes the semantics and behaviors to expect
from nonblocking synchronizations and epochs. Section VII
discusses a few key design choices. Section VIII presents
the experimental results. Section IX discusses some related
work, and Section X summarizes our conclusions and briefly
mentions future work.

II. BACKGROUND

One-sided communications occur over a window object that
defines (1) the memory regions that each process intends to
expose for remote accesses and (2) a communication scope en-
compassing a set of processes. In one-sided communications,
the origin process specifies all the communication parameters
while the target process remains passive. MPI defines two
classes of RMA synchronizations: active target, where the
target explicitly opens an epoch as well, and passive target,



where the target does not make epoch calls. Active target
epochs can be fence-based, in which case they are created and
ended by MPI_WIN_FENCE. Active target epochs can also
be based on general active target synchronization (GATS), in
which case origin-side access epochs are opened and closed by
MPI_WIN_START and MPI_WIN_COMPLETE, respectively;
and target-side exposure epochs are opened and closed by
MPI_WIN_POST and MPI_WIN_WAIT, respectively. GATS
is a fine-grained style of active target compared with fence. In
passive target epochs, the origin requests a lock from the target.
The request can be from a single target, in which case the
underlying epoch is opened and closed with MPI_WIN_LOCK
and MPI_WIN_UNLOCK, respectively. MPI_WIN_LOCK can
make exclusive (MPI_LOCK_EXCLUSIVE) or shared (MPI_
LOCK_SHARED) lock requests. The origin in passive target
epochs can also target all the processes in the RMA win-
dow for a shared lock with an epoch opened and closed
with MPI_WIN_LOCK_ALL and MPI_WIN_UNLOCK_ALL,
respectively. By using one of a set of flush routines, RMA
communications occurring inside a passive target epoch can
be completed without closing the epoch.

III. THE BURDEN OF BLOCKING RMA
SYNCHRONIZATIONS: INEFFICIENCY PATTERNS

The MPI one-sided inefficiency patterns [3], [4] are situa-
tions that force some unproductive wait or idleness on a peer
involved implicitly or explicitly in RMA communications. The
inefficiency patterns are a consequence of the blocking nature
of RMA synchronization routines. They are listed as follows:

• Late Post: A GATS-related inefficiency where MPI_
WIN_COMPLETE or MPI_WIN_START must block
because the target is yet to issue MPI_WIN_POST.

• Early Transfer: A pattern that occurs when an RMA
communication call blocks because the target epoch
is not yet exposed.

• Early Wait: A pattern that occurs when MPI_WIN_
WAIT is called while the RMA transfers are not
completed yet.

• Late Complete: The delay between the end of the last
RMA transfer and the actual invocation of MPI_WIN_
COMPLETE. That delay propagates to the target as an
unproductive wait. The target-side MPI_WIN_WAIT
must block as long as MPI_WIN_COMPLETE is not
invoked by the origin; and when that invocation is
delayed for reasons other than RMA transfers, Late
Complete occurs.

• Early Fence: The wait time associated with an epoch-
closing fence call that occurs before the RMA trans-
fers complete. Early Fence is the fence epoch equiv-
alent of Early Wait for GATS epochs.

• Wait at Fence: A superset of Early Fence. A closing
fence call in any process must block until the same
call occurs in all the processes in the group over which
the RMA window is defined. If any process delays its
call to fence beyond the end of its last RMA transfer,
then it inflicts a Wait at Fence inefficiency to the other
processes that issue their epoch-closing fence earlier
for the same RMA window.

We have also identified another inefficiency pattern not doc-
umented in [3], [4]. Since a passive target epoch does not
involve an explicit epoch from the target side, situations of
inefficient latency transfers are less obvious. When at least
two origins are considered, however, we can define a new
inefficiency pattern inflicted by current lock holders to sub-
sequent lock requesters. That inefficiency pattern, which we
call LateUnlock, can occur under two conditions:

1) The current holder possesses the lock exclusively. All
the RMA transfers of the epoch have already com-
pleted, but the holder delays the call to MPI_WIN_
UNLOCK while there are any number of requesters
willing to acquire the same lock (exclusively or not).

2) The current holders possess the lock in a shared
fashion. All the RMA transfers are completed for all
the holders at a time t. At least one holder is holding
the lock beyond t while an exclusive lock requester
is waiting.

Which inefficiency pattern can occur might depend on the
MPI implementation the application is using. Actually, the
MPI standard does not specify the blocking or nonblocking
nature of most epoch-opening synchronizations. The specifi-
cation simply requires that RMA operations avoid accessing
nonexposed remote epochs and that epoch-closing routines not
exit until all the RMA transfers originating from or directed
to the epoch are done transferring, at least locally. In practice,
however, most modern and major MPI libraries [5], [6], [7]
provide nonblocking epoch-opening routines—and rightfully
so, because the blocking design of those phases of one-
sided communication is documented as suboptimal [8], [9].
Consequently, most MPI libraries avoid incurring Late Post on
MPI_WIN_START invocation. Late Post can still be incurred
at MPI_WIN_COMPLETE, however.

Even though MPI-2.2 did not strictly specify RMA com-
munication calls as nonblocking, implementations typically
provide only nonblocking versions of those routines, for the
same reasons described in [8], [9]. Thus, Early Transfer is
generally avoided altogether. Additionally, MPI-3.0 has now
explicitly specified the RMA communication calls as non-
blocking, making the Early Transfer pattern nonexistent as per
the standard itself. Furthermore, Early Wait can be mitigated
by using MPI_WIN_TEST. Late Post, Late Complete, Early
Fence, and Wait at Fence, however, are still as much of a
burden in MPI-3.0 RMA as they were in MPI-2.0 RMA.

IV. IMPACTS OF NONBLOCKING RMA EPOCHS

The generic nonblocking handling mechanism that exists
in MPI operates in two phases: Initiation and Completion.
The initiation (e.g., MPI_ISEND) is always nonblocking and
corresponds to the moment the operation is issued. The
initiation returns a REQUEST handle that is used later to
detect completion with any of the wait or test family of MPI
functions. Our proposal of nonblocking synchronizations is
conceived to operate the same way. The initiation is provided
with the new API presented in Section V; and completion is
based on the already existing wait or test family of functions.
The benefits of nonblocking synchronizations are described in
the following subsections.



A. Opportunistic Message Progression

Every time it gets a chance to use the CPU for a commu-
nication ci for instance, the progress engine opportunistically
tries to trigger or make progress on (if possible) all previously
pending communications ci−k that could not be triggered
earlier because of some unsatisfied precondition. Opportunistic
message progression is beneficial only to communications that
are already issued and pending inside the MPI middleware.
Nonblocking synchronizations increase the effectiveness of op-
portunistic message progression for RMA epochs by allowing
several of them, no matter their kinds (passive or active target),
to reside in pending states inside the progress engine.

B. Contention Avoidance

Two epochs Ek and Ek+1 posted back to back lead to Ek+1

potentially suffering contention because of the closing synchro-
nization of Ek. Such a situation can occur in algorithms that
perform massive transactions in potentially unstructured ways.
The communication pattern is as follows. At any given time, a
set of peers {Pi} can update another (not necessarily disjoint)
set {Pj} of processes. Processes do not know ahead of time
how many updates they will get; nor can they determine where
these updates will originate from or what buffer offset they
will modify. Consequently, the updates are best fulfilled one-
sidedly by the updating peers. Each update is atomic and is best
fulfilled inside exclusive lock epochs. This communication pat-
tern suffers contention with blocking synchronizations because
each update must wait for the previous one to complete. With
nonblocking synchronizations, multiple epochs (or updates)
can be pending simultaneously, and some can even complete
out of order, leading to an increased transaction throughput.

C. Fixing the Inefficiency Patterns

We mentioned in Section III that the Late Post, Late
Complete, Early Fence, Wait at Fence, and Late Unlock
inefficiency patterns are yet to be fixed. All five inefficiency
patterns find a solution with nonblocking epochs.

1) Late Post: We define t0 as the invocation time of the
origin-side epoch-closing routine. We assume that MPI_WIN_
POST is late and occurs Dp after t0. The data transfer duration
of the RMA communications in the epoch is Dtr; and the time
needed to close the origin-side epoch if all transfers are already
completed is ε. In these conditions, the earliest the next origin-
side activity can start after MPI_WIN_COMPLETE is

t1 blocking epoch = t0 +Dp +Dtr + ε. (1)

With a nonblocking origin-side epoch closing, the RMA trans-
fer duration does not propagate to the next activity, if any.
More important, any delay created by the target not exposing
its epoch on time does not propagate to the next origin-side
activity. Consequently, the earliest the next activity can start
becomes

t1 nonblocking epoch = t0 + ε. (2)

Equation 2 shows that nonblocking epochs allow the origin
process to completely mitigate the Late Post situation if the
next activity does not depend on data produced in the epoch.
Then, in absence of data dependency, since the next activity
starts sooner than t1 blocking epoch, it overlaps (partially or
entirely) with the delay and RMA transfer of the previous

epoch even if it occurs after the epoch is over, allowing the
overall completion of both activities to be reduced.

2) Early Fence: We define t0 here as the time when MPI_
WIN_FENCE or its nonblocking equivalent is invoked. With
the previous definitions for all the other relevant time variables,
the earliest moment the next activity can start with a blocking
fence is

t1 blocking epoch = t0 +Dtr + ε. (3)

With a nonblocking version of MPI_WIN_FENCE, the next
activity can also start at t1 nonblocking epoch, as expressed by
Equation 2, with the same positive consequences mentioned
previously.

3) Late Complete: Blocking epochs offer no indication
as to the right synchronization call timing for maximizing
performance. Actually, they offer conflicting strategies for
latency avoidance or mitigation. Epochs are critical section-
like regions; and, as such, they should be kept as short
as possible (scenario 1 of Figure 1(a)). At the same time,
CPU idling should be avoided. Therefore, useful work should
be overlapped with the communication of an epoch if that
communication is thought to have a somehow lasting transfer
time (scenario 3 of Figure 1(a)). The performance-savvy MPI
programmer resorts to this second approach to avoid the CPU
idleness of scenario 1 in Figure 1(a). It is unrealistic to
expect the occurrence of scenario 2 of Figure 1(a) because
the application cannot calibrate its work length to be exactly
the length of its data transfer.

Because these epochs are like critical sections, MPI_WIN_
COMPLETE is invoked as quickly as possible. For an access
epoch, however, there is no guarantee that the corresponding
exposure epoch will be opened on time. In a GATS setting,
therefore, an early MPI_WIN_COMPLETE call increases both
the risk and magnitude of Late Post suffering by origin
processes.

The Late Complete inefficiency results from the hunt for
communication/computation overlapping and could therefore
be the consequence of applying recommended HPC pro-
gramming practices. The situation leading to Late Complete
(scenario 3 in Figure 1(a)) is also a selfish attempt made
by the origin process to avoid stalling while its own RMA
transfers are in progress. By doing so, the origin process
is better off; but it potentially transfers an unjustified wait
time to the target. The alternative is that shown in scenario
1 of Figure 1(a), which guarantees the absence of the Late
Complete inefficiency pattern at the expense of the origin
process. The two (realistic) scenarios 1 and 3 are therefore
the two aspects of an unavoidable tradeoff where one peer
potentially suffers some undesirable wait. With a nonblocking
version of MPI_WIN_COMPLETE (Figure 1(b)), the tradeoff
disappears because it becomes possible to keep the origin in
scenario 3 while simultaneously having the target in scenario
1 of Figure 1(a).

4) Wait at Fence as the Risky Remedy for Early Fence:
Early Fence and Wait at Fence are the two unfortunate options
of a blind decision-making strategy. In order to avoid Early
Fence with blocking epoch routines, a process should issue
its fence call later. Unfortunately, by doing so, it might inflict
Wait at Fence to the other participant processes. Once again,
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Fig. 1: Impact of nonblocking epochs on Late Complete

nonblocking epoch routines allow every participant to be self-
ish without inflicting any inefficiency to the other participants.
With the right design in place, the nonblocking fences are
issued early for every participant; the subsequent calls to test
or wait can be delayed as much as possible without any latency
transfer to remote peers.

5) Late Unlock: Late Unlock can be analyzed by replacing
the “origin” in Figure 1 with the “current lock holder” and
the “target” with the “subsequent lock requester.” There is
no incentive for the current lock holder to issue MPI_WIN_
UNLOCK early, since it might experience the same stalling
as the origin in scenario 1 of Figure 1(a). Unfortunately, by
putting itself in scenario 3 of Figure 1(a), the current lock
holder could inflict an undesirable wait time on a subsequent
lock requester. Just as in the case of Late Complete, a non-
blocking version of MPI_WIN_UNLOCK completely voids the
tradeoff.

V. NONBLOCKING API

For each potentially blocking epoch function MPI_WIN_
FUNC(LIST_OF_PARAM), a nonblocking version of the
form MPI_WIN_IFUNC(LIST_OF_PARAM,REQUEST) is
provided. LIST_OF_PARAM is the list of parameters of the
blocking version; REQUEST is an output parameter used to
detect completion with a function from the test or wait family
of MPI routines.

The nonblocking epoch-opening API is composed
of MPI_WIN_IPOST, MPI_WIN_ISTART, MPI_WIN_
IFENCE, MPI_WIN_ILOCK, and MPI_WIN_ILOCK_ALL.
While modern MPI libraries tend to provide nonblocking
epoch-opening routines [8], [5], [6], [7], [9], the MPI standard
is not specific about the blocking or nonblocking nature of
all these functions; that is, their behavior is implementation-
dependent. The API provided in this section specifies the

uniform ambiguity-free nonblocking nature of its functions.
MPI_WIN_IPOST is provided solely for uniformity and
completeness, since MPI_WIN_POST was already specified
as nonblocking in MPI-3.0.

The nonblocking epoch-closing API is composed of MPI_
WIN_IWAIT, MPI_WIN_ICOMPLETE, MPI_WIN_IFENCE,
MPI_WIN_IUNLOCK, and MPI_WIN_IUNLOCK_ALL. Re-
call that MPI-3.0 already provides MPI_WIN_TEST as the
nonblocking equivalent of MPI_WIN_WAIT. However, the
new MPI_WIN_IWAIT that we propose remains relevant: in
fact, compared with MPI_WIN_TEST, the combination of
MPI_WIN_IWAIT with the test family of nonblocking han-
dling is more powerful because it allows the asynchronous and
wait-free initiation of subsequent epochs. MPI_WIN_TEST
detects the completion of the current exposure epoch in a
nonblocking manner; but since no other exposure epoch can
be opened until the completion actually occurs, it does not
prevent application-level epoch serialization. It simply prevents
the CPU from idling while waiting for the currently active
exposure epoch to complete.

The nonblocking flush API is composed of
MPI_WIN_IFLUSH, MPI_WIN_IFLUSH_LOCAL,
MPI_WIN_IFLUSH_ALL, and MPI_WIN_IFLUSH_
LOCAL_ALL.

VI. SEMANTICS, CORRECTNESS, AND PROGRESS ENGINE
BEHAVIORS

For an epoch, we distinguish between application-level
lifetime and internal lifetime. We use the terms “open” and
“closed” to define the boundaries of the application-level
lifetime of an epoch. The internal lifetime takes place inside
the middleware: it starts when the epoch is internally activated
for progression by the progress engine, and it ends when the
epoch progression is completed and all the internal completion



notifications have been sent to all the relevant peers. The
terms “activated” and “completed” define the boundaries of
the internal lifetime of an epoch; and an epoch is said to be
active inside those boundaries. We designate by deferred epoch
an epoch that cannot be activated as soon as it is opened at
application level. A deferred epoch is different from an epoch
that is not yet granted access. In fact, all kinds of epochs
can be deferred, including exposure epochs for which access
acquisition is not meaningful.

A. Semantics and Correctness Clarifications

The statements in this section do not alter any aspect of the
MPI-3.0 specification except for the meaning of epoch closing.
The following rules, meant to define constraints, clarifications,
and recommendations, apply:

1) An epoch can be opened in a nonblocking fashion and
closed in a blocking fashion and vice versa. In fact, any
combination of blocking and nonblocking routines can be
used for the synchronization routines that make an epoch.

2) An epoch closed with a nonblocking synchronization
might not complete until completion is explicitly detected
with one of the test or wait family of functions. Accessing
the buffers touched by such an epoch remains unsafe until
completion is detected at the application level.

3) In active target epochs, access and exposure epochs match
one another in an FIFO manner. The oldest deferred access
epoch is always the next to match the oldest deferred
exposure epoch, and vice versa. If any of the sides does
not have deferred epochs, then the match occurs between
the oldest deferred epoch on one side and the next opened
epoch on the other side.

4) For a given process, epochs are always activated serially
in the order where they become pending inside the progress
engine. Consequently, if the epoch Ek cannot be activated
yet, then Ek+1 cannot be activated either. This rule means
that epochs are not skipped. This rule strictly means “Ek+1

is activated after Ek is activated,” not “Ek+1 is activated
after Ek completes” (see Section VI-B).

5) MPI_WIN_IFENCE entails a barrier semantics wherever
MPI_WIN_FENCE does, that is, whenever the fence call
ends an epoch. In particular, if a call to MPI_WIN_IFENCE
must close epoch Ek and open epoch Ek+1, the progress
engine of each process must internally delay activating Ek+1

until it receives the Ek completion notifications from all the
other peers encompassed by the RMA window. The delay
impacts how long it takes for completion to be fulfilled
for MPI_WIN_IFENCE, but it must produce no noticeable
blocking call at the application level.

B. Info Object Key-Value Pairs and Aggressive Progression
Rules

To guarantee correctness by default, the progress engine
does not activate an epoch while another one is still active;
that is, by default “Ek+1 is activated after Ek completes.” This
default behavior does not defeat the purpose of nonblocking
epochs or synchronizations, since opportunistic message pro-
gression is still beneficial for all the epochs serialized inside
the progress engine; the communication in these epochs is
activated as early as possible when they are already pending
inside the middleware.

Further optimizations are possible beyond the sole op-
portunistic message progression advantage, especially when
the programmer possesses certain guarantees with respect to
memory consistency hazards. Thus, in addition to the API, we
provide the following info object key-controlled Boolean flags
that the programmer can associate with an RMA window:

• MPI_WIN_ACCESS_AFTER_ACCESS_REORDER
(A_A_A_R): If its value is 1, then the progress
engine can activate and advance the progression
of any origin-side epoch even if an immediately
preceding origin-side epoch is still active.

• MPI_WIN_ACCESS_AFTER_EXPOSURE_
REORDER (A_A_E_R): If its value is 1, then
the progress engine can activate and advance the
progression of any origin-side epoch even if an
immediately preceding exposure epoch is still active.

• MPI_WIN_EXPOSURE_AFTER_EXPOSURE_
REORDER (E_A_E_R): If its value is 1, then
the progress engine can activate and advance the
progression of any target-side epoch even if an
immediately preceding target-side epoch is still
active.

• MPI_WIN_EXPOSURE_AFTER_ACCESS_
REORDER (E_A_A_R): If its value is 1, then
the progress engine can activate and advance the
progression of any target-side epoch even if an
immediately preceding origin-side epoch is still
active.

If any of these four flags is enabled, the RMA
communications of a subsequent epoch Ek+1 can end
up being transferred before those of a previous epoch
Ek. If the epochs contain any MPI_GET, MPI_RGET,
MPI_GET_ACCUMULATE, MPI_RGET_ACCUMULATE,
MPI_FETCH_AND_OP, or MPI_COMPARE_AND_SWAP,
write reordering can occur in the origin address space with
respect to the chronology of Ek and Ek+1. Similarly, if the
epochs contain MPI_PUT, MPI_RPUT, MPI_ACCUMULATE,
MPI_RACCUMULATE, MPI_GET_ACCUMULATE,
MPI_RGET_ACCUMULATE, MPI_FETCH_AND_OP, or
MPI_COMPARE_AND_SWAP, write reordering can occur
in some targets with respect to the chronology of Ek and
Ek+1. Write reordering is not a desirable outcome because of
its potential hazards. Justifiably, all these flags are disabled
by default. It is assumed that the HPC programmer who
activates these flags can guarantee, using the knowledge of
the data access pattern of the application, that the RMA
activities of concurrently progressed epochs involve strictly
disjoint memory regions. These flags operate at the window
level and independently for each window. They allow the
progress engine to perform aggressive message progression
by completing epochs out of order if required.

The optimization flags do not apply to any two adja-
cent epochs of which at least one is opened by MPI_WIN_
LOCK_ALL, MPI_WIN_FENCE, or their respective nonblock-
ing equivalents. For any two adjacent epochs of which one is
based on MPI_WIN_LOCK_ALL or MPI_WIN_ILOCK_ALL,
if the other epoch is based on MPI_LOCK_SHARED, then re-
cursive locking can occur for a certain peer if the optimization



flags were to take effect. If the other epoch is not based on
MPI_LOCK_SHARED, then the flags create the risk of violat-
ing, in at least one process, the MPI standard constraint that
disallows an RMA window to be simultaneously locked and
exposed. As for MPI_WIN_FENCE and MPI_WIN_IFENCE,
they simultaneously open an access and exposure epoch on
every process in the RMA window. They additionally entail
a barrier semantics every time they close an epoch. Because
of the resulting complexity, enabling the optimization flags on
fence epochs calls for further analysis, which we leave for
future efforts.

C. Discussion on Adoption Challenges

The use of the Section V API requires the application-
level programmer to have previous familiarity with (1) MPI
RMA as defined in the MPI-3.0 specification and (2) the
generic approach to nonblocking communication handling in
either two-sided or collective communications. As long as
the progress engine optimizations of Section VI-B are not
enabled, the added complexity of the new nonblocking routines
compared with their blocking counterpart is similar to the
difference of complexity between the use of MPI_IRECV and
MPI_RECV, for instance.

If some progress engine flag allows out-of-order epoch
progression or completion, then the added level of complexity
depends on how accurately the programmer can reason about
disjoint memory accesses. That reasoning can be complex, but
it can also be trivial in certain situations. For instance, if for
a given process multiple origin-side epochs are only doing
PUT or ACCUMULATE only in disjoint sets of targets, they
are guaranteed to modify disjoint memory regions because
they touch strictly distinct virtual address spaces. In general,
the programmer has a few means of reasoning about memory
accesses. The disp, target_datatype, and count pa-
rameters that are provided in almost all MPI RMA calls can
be leveraged for reasoning about data access overlapping. The
algorithm of an application can also sometimes be a useful
means of reasoning about memory access overlap hazards. In
any case, the programmer in doubt is encouraged to either
avoid activating the optimization flags or resort to barriers.

VII. DESIGN AND REALIZATION NOTES

We discuss here a design that we implemented in MVA-
PICH. The need arose to (1) completely decouple the exit of
synchronization routines from the preceding RMA communi-
cation calls, (2) manage arbitrary numbers and combinations
of simultaneously pending epochs per RMA window, and (3)
implement new concepts that cannot easily be patched onto the
existing MVAPICH RMA implementation. Thus, we opted for
a complete redesign that covers both blocking and nonblocking
synchronizations as well as the RMA communication calls.
We provide a new progress engine for the RMA activities.
The previously existing MVAPICH progress engine is kept
for collective and two-sided communications. Both progress
engines collaborate as a single one to ensure that MPI calls
made at application level still realize full opportunistic message
progression; that is, an RMA-related call progresses pending
collective and two-sided communications and vice versa. The
implementation is done over InfiniBand with OFED verbs [10].
This section presents some of the many design decisions.

A. Deferred Epochs and Epoch Recording

Deferred epochs are middleware-level concepts that we
introduced in Section VI. An epoch is deferred when its im-
mediate activation would violate any of the rules or statements
of Section VI. We implemented these rules in a predicate.
Deferred epochs are hosted in a deferred epoch queue attached
to their RMA windows. A new epoch opened at application
level leads to the creation of a corresponding epoch object
inside the MPI middleware. Epoch objects are created inactive
by default. Then, the progress engine passes them through
the aforementioned predicate before possibly activating them.
An epoch can remain deferred even until it is closed at the
application level, in which case it is internally flagged as
closed. A deferred epoch is recorded until it is either closed at
application level or activated inside the MPI middleware. When
it becomes activated, a deferred epoch is replayed internally up
to its last recorded application-level event. If the epoch was still
open at the application level by the time it becomes active, its
subsequent application-level events are fulfilled immediately
inside the progress engine. Certain aspects of deferred epochs
are recorded by saving exactly function call arguments and
reissuing internal versions of the calls upon activation. Other
aspects are saved after a certain amount of processing. Every
time an active epoch is completed internally, the progress
engine scans the existing deferred epochs of the same RMA
window and activates in sequence all those that do not violate
any rule. The scan stops when the first deferred epoch is
encountered that fails activation conditions.

B. Epoch Ids and Epoch Matching

We define Ti as some group of processes all acting as
targets in the same RMA window. Let us consider three
processes P0, P1, and P2. P1 is defined to belong to the
groups T0, T1, T2, T3, and T5. P2 belongs to T4 and T5. P0

is an origin process that opens six access epochs successively
towards T0 to T5 in order. The 6th access epoch of P0 is
the 5th towards P1 and the 2nd towards P2. Because of the
nonblocking synchronizations, P2 for instance could open its
2nd exposure far ahead of P0 opening its overall 6th access
epoch to match that second exposure of P2. This example
shows that when a target grants access to an origin that is
several epochs late, the granted access notification must persist
for the origin to see it when it catches up. Since there is a need
for keeping a history of granted accesses, nonblocking epochs
create a problem reminiscent of message queue processing
[11]. Nevertheless, we managed to fulfill the epoch matching in
O(1) for both running time and space cost. In fact, for a given
RMA window, a single triple of 64-bit numbers is required to
manage the epoch-matching history between a remote process
Pr of rank r and the local process Pl, without respect to the
number of pending epochs that link Pr and Pl. We emphasize
that Pl and Pr can be the same process if l == r. In each
local process Pl and for each remote process Pr, we define a
triple ωr = 〈al, el, gr〉 that is made of the number (so far) of
(1) accesses requested from Pl to Pr, (2) exposures opened
from Pl to Pr, and (3) accesses obtained from Pr by Pl,
respectively. gr is updated one-sidedly, via RDMA or shared
memory, by Pr, while al and el are updated locally by Pl. Only
activated epochs modify ωr. Deferred epochs can nevertheless
modify other counters, for instance to prevent recursive shared
locking when multiple activation occurs. Even though granting



a passive target lock does not create an exposure epoch, the
host process of a lock still updates el locally and gr remotely
in the process it is granting the lock to. The access Id of a
new access epoch Ei toward Pr is Ai = ++al. Then Ai > gr
means that Pr is at least 1 exposure epoch late compared with
Ei in Pl. If Ai ≤ gr, then Pr has already granted the access
required by Ei as well as all the k subsequent accesses (for
k = gr − Ai). Ai ≤ gr thus means that Ei can perform its
RMA communications to Pr. To close an access epoch toward
a given target, Pl sends a done packet containing Ai to match
the exposure Id of the matching epoch in the target. Closing
a lock epoch requires a different kind of done packet.

C. Request Management and Epoch Opening, Closing, and
Flushing

Request objects are the internal implementation of the
MPI_REQUEST handle used at the application level in the test
and wait family of MPI functions. We added a few fields to
the existing request object of MVAPICH so they could now be
specialized as epoch-opening, epoch-closing, or flush requests.

All the epoch-opening routines exit immediately, including
those that are not in the new nonblocking API of Section V.
Nonblocking epoch-opening routines always return a dummy
request object that is flagged as completed at creation time,
even if the epoch is not actually activated yet. Any test or
wait call on the MPI_REQUEST handle associated with any
such request object always detects immediate completion.

An epoch-closing routine creates a request object that is
attached to the epoch object even if the epoch is still deferred.
If the epoch closing occurs via a nonblocking routine such
as MPI_WIN_ICOMPLETE, then the handle of the request
object is returned to the application as an MPI_REQUEST.
If a blocking routine such as MPI_WIN_COMPLETE is used
instead, a wait call is invoked internally over the request object.
An epoch-closing request object is flagged as completed only
when all the origin-side or target-side completion conditions of
the concerned epoch are met. When that happens, a completion
signal is issued from the new RMA progress engine to the
old MVAPICH progress engine, which propagates the request
status to any relevant test or wait call.

Blocking flush routines are not implemented in terms of
their nonblocking equivalents. Instead of creating and waiting
over internal request objects, the blocking flush routines sim-
ply invoke the RMA progress engine until some epoch-closing
conditions are met. For instance, an MPI_WIN_FLUSH call in
a single-target lock epoch completes by simply waiting for all
the RMA calls of the epoch to complete. In comparison, new
RMA calls can be issued after an MPI_WIN_IFLUSH call
that is yet to complete; hence, the simple approach of waiting
for all the communications of the single-target lock epoch
can no longer be used. Instead, a monotonically increasing
number is used to give an age to each RMA call object. Then
the nonblocking flush request object is stamped with the age
of the RMA call that immediately precedes. The completion
counter of the request object is assigned either from the overall
number of noncompleted RMA calls in the epoch or from
the number of RMA calls yet to complete for a given target.
Then, upon completion, any RMA object that is younger than
a flush request object decrements its completion counter. A

flush request object completes when its completion counter
reaches zero.

D. A Typical Progress Engine Execution

The RMA progress engine is fundamentally nonblocking;
and each invocation of its topmost routine does a comprehen-
sive sweep of all RMA-related activities that are pending and
can be fulfilled without blocking. At each iteration, the RMA
progress engine executes the following steps in order:

1) Verification of the completion of outgoing and incom-
ing internode messages.

2) Posting of internode RMA communications.
3) Batch completion of all possible epochs, and activa-

tion of some deferred epochs.
4) Posting of intranode RMA communications.
5) Consumption of intranode notifications.
6) Batch processing of lock/unlock requests.
7) Batch completion of all possible epochs, and activa-

tion of some deferred epochs.

Upon the discovery of any outgoing communication com-
pletion, Step 1 updates some flow control credits and un-
pins or puts back previously pinned memory in the mem-
ory registration cache. Outgoing completion notifications can
lead to the handling of accumulate, fetch_and_op,
and compare_and_swap functions as well as lock/unlock
request processing. Step 1 occurs before Step 2 to alleviate the
flow control burden; that is, as much as possible, the progress
engine recovers flow control credits before trying to post new
RMA communications. In Step 3, the progress engine scans
all the active epochs of all RMA windows and completes
those that satisfy their completion conditions. We emphasize
that completion notification packets are sent to each target
epoch as soon as the last RMA transfer meant for the target
is fulfilled. Consequently, the various target epochs linked to
the same origin epoch can complete at noticeably different
times. After the intranode RMA are posted in Step 4, the
progress engine consumes intranode notifications in Step 5.
There is one two-way shared-memory wait-free FIFO between
any two RMA windows. That notification channel deals only
with 64-bit packets that are used to encode and send intranode
lock/unlock requests as well as epoch completion packets.
Step 5 potentially builds a backlog of lock or unlock requests;
and Step 6 follows immediately to process them. Then, in
Step 7, all the active epochs are scanned again for completion,
and some deferred epochs are activated if required.

One can notice that Step 3 and Step 7 are identical. In fact,
Step 4, even if it is nonblocking, can occupy the CPU for a
noticeable amount of time if large intranode data transfers must
be processed. Consequently, if the completion of any epoch can
be fulfilled after the first two internode communication steps,
the epoch must be completed right away and new deferred
epochs activated without suffering the potential delay of Step 4.
Furthermore, a given activity is not necessarily confined to a
given step. For instance, while Step 3 and Step 7 complete and
activate epochs in batch for all RMA windows, an isolated
epoch completion followed by a series of epoch activations
can occur for a single RMA window in Step 1 and Step 4.
Similarly, ad hoc lock/unlock processing can occur in Step 1
for any single RMA window, even if Step 6 does the same
activity for all the RMA windows.



VIII. EVALUATION

We describe here comparison tests between the one-sided
communication model provided by MVAPICH 2-1.9 and the
new implementation discussed in Section VII. We use the
terms “MVAPICH,” “New,” and “New nonblocking” for the
three test series whose results are obtained with the vanilla
MVAPICH RMA, the new design with blocking synchroniza-
tions, and the new design with nonblocking synchronizations,
respectively. The experimental setup is a 310-node cluster.
Each node has two Nehalem 2.6 GHz Pentium Xeon CPUs
with hyperthreading disabled, 36 GB of memory, and Mel-
lanox ConnectX QDR InfiniBand HCA. The results of each
microbenchmark test are the average over 100 iterations. For
the application pattern and application tests, each result is the
average over 3 iterations.

A. Microbenchmark

Both the blocking and nonblocking synchronization ver-
sions of the proof-of-concept implementation offer commu-
nication/computation overlapping and RMA latency at least
on par with the vanilla MVAPICH. Because of space lim-
itations, however, microbenchmark results are shown only
for the conceptual improvements brought by the nonblocking
synchronizations. The usual generic latency and overlapping
observations (with no delay propagation and no late peer
arrival) can nevertheless be briefly summarized as follows.
Both the blocking and nonblocking versions of the new im-
plementation have similar latency performance compared with
that of MVAPICH for all kinds of epochs. MPI_ACCUMULATE
with large payloads (more than 8 KB on our test system) do not
provide overlapping in any of the implementations because of
the need for an internal rendezvous for target-side intermediate
buffer to receive the origin-side operand. In all other cases, the
new implementation provides full communication/computation
overlapping in lock epochs, whereas MVAPICH provides none
because of its lazy lock acquisition approach [12]. In lazy lock
acquisition, the locking attempt, and consequently the whole
epoch, is not internally fulfilled until MPI_WIN_UNLOCK is
invoked at the application level. For fence epochs, the new
implementation provides slightly better overlapping as well;
and for GATS, the results are similar for all implementations.

1) Inefficiency Patterns: We discuss here our approach to
mitigating the five inefficiency patterns identified earlier.
Late Post: The test setting is made of a target process P0,
which is 1000 µs late in opening its exposure epoch and a
process P1 meant for two-sided communication. An origin
process P2 first opens an access epoch toward P0. After the
epoch is closed, the process then performs a single two-sided
communication of 1 MB with P1. A single put of 1 MB is
performed inside the epoch. The size of the put does not
matter. Figure 2 shows the duration till completion of the
access epoch, the subsequent activity, and both activities for
the origin (cumulative). All measurements are made in P2 and
with a time origin taken at 0. As a reference, in pure latency
experimentations, any epoch hosting an MPI_PUT of 1 MB
takes about 340 µs for all three test series. The delay of the
Late Post cannot be avoided by the origin-side epoch, as shown
by the access epoch length being about 1340 µs for all three
test series. While the subsequent activity takes about 1660 µs
for the two blocking test series, it takes only about 340 µs
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Fig. 2: Mitigating the Late Post inefficiency pattern: observing
delay propagation in an origin process
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Fig. 3: Mitigating the Late Complete inefficiency pattern:
observing delay propagation in a target process

for the nonblocking test series, proving that the nonblocking
synchronization prevented the delay from being propagating
beyond the only concerned epoch. In fact, the nonblocking
test series overlaps the subsequent activity with the delay of
the late post, leading the cumulative latency of all activities to
be only the overall latency of the first activity.

Late Complete: The test setting is made of a single origin
and a single target. The origin issues a single MPI_PUT and
then overlaps 1000 µs of work before the blocking call that
completes the epoch. In order to make the delay obvious, the
work length is purposely chosen to be bigger than 340 µs,
which is the approximate latency of transferring 1 MB of data.
As a reminder, epoch closing (e.g., MPI_WIN_ICOMPLETE)
is distinct from epoch completion (wait or test) with non-
blocking synchronizations. With blocking synchronizations,
epoch closing and completion are a single routine. This test
is performed for multiple message sizes. Figure 3 shows the
length of the target-side epoch. The origin-side epoch, which is
not shown, achieves communication/computation overlapping
for all three test series; that is, the access epoch lasted
max(1000 µs,RMA latency). The two blocking test series
propagates the totality of the origin-side epoch length to the
target; including the delay d = 1000 µs − RMA latency.
In comparison, the nonblocking test series guarantees that the
target waits only for the duration of the actual RMA transfers.

Early Fence: The test setting is made of two processes
sharing a fence epoch. One of the processes acts like the
origin and issues an MPI_PUT of either 256 KB or 1 MB.
The other process acts like a target. Unlike the Late Post
inefficiency, the Early Fence inefficiency, by definition, is not
the result of any delay. However, since the wait created by an
early epoch-closing fence call corresponds to an idling CPU
core (assuming an autonomously progressing network device),
the Early Fence situation is still inefficient from an HPC
point of view and should therefore be mitigated, if possible.
We achieve the mitigation by performing a subsequent CPU-
bound activity of 1000 µs after the epoch of the process
acting as the target; and the measurements are performed in
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Fig. 4: Mitigating the Early Fence inefficiency pattern: observ-
ing communication latency propagation in a target process
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Fig. 5: Mitigating the Wait at Fence inefficiency pattern:
observing delay propagation in a target process

that process. Figure 4 shows the cumulative latency of both
activities for both message sizes. In the nonblocking test series,
the subsequent activity is overlapped with the data transfer time
of the epoch, even if the epoch was already closed, leading to
a cumulative latency of 1010 µs. In comparison, both activities
are serialized in the blocking test series, leading to much
larger cumulative latencies. One can see that an attempt by
the blocking test series to overlap the CPU-bound activity
inside the epoch bears the risk of creating the Wait at Fence
inefficiency (see Section IV-C4) and is therefore not equivalent
to the safe overlapping achieved by the nonblocking test series
in the current experiment.

Wait at Fence: Wait at Fence is the fence equivalent of
the Late Complete issue for GATS epochs and has a similar
test setting. One process acts like an origin, while the second
one acts like a target in a fence epoch. The measurements are
performed from the process acting as target. Figure 5 shows
that, unlike the blocking test series, the nonblocking test series
prevents the propagation from origin to target of the non-RMA-
related latency.

Late Unlock: This test requires two origin processes O0

and O1 and a single target T . Both O0 and O1 lock T
exclusively, but we ensure that O0 issues its lock before O1

does. Each process issues a single put of 1 MB; but O0

works for 1000 µs before unlocking T . Figure 6 shows the
duration till completion of the first lock epoch (issued by O0)
and the second one (issued by O1). In MVAPICH, thanks to
lazy lock acquisition, even though O0 requested the lock first
at the application level, the lock was still actually available
by the time O1 issues both its MPI_WIN_LOCK and its
MPI_WIN_UNLOCK. As a result, O1 managed to get the lock
as soon as it internally asked for it (MPI_WIN_UNLOCK in the
case of MVAPICH). Consequently, O1 did not experience Late
Unlock and lasted only about 340 µs. The lazy lock acquisition
approach is immune to Late Unlock because the whole epoch
always degenerates to the single unlock call. The consequence,
as shown by the O0 epoch (about 1340 µs for MVAPICH),
is a total absence of communication/computation overlapping.
The new implementation acquires the lock right away if it is
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Fig. 6: Mitigating the Late Unlock inefficiency pattern: ob-
serving delay propagation to a subsequent lock requester
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Fig. 7: Out-of-order GATS access epoch progression with
A A A R

available, and achieves overlapping with both its blocking and
nonblocking versions, as shown by the first lock in Figure 6.
The blocking series of the new implementation suffers Late
Unlock in the second lock and had to incur the whole duration
of the first lock epoch plus its own data transfer latency. In
the nonblocking series, Late Unlock is avoided; the O1 epoch
lasts only the duration of the data transfers of O0 and the one
of O1 itself; but O1 does not incur the 1000 µs latency created
by the work of O0.

2) Progress Engine Optimizations: All the previous tests
were performed with all progress engine optimization disabled.
Here, we show the effects of the optimization flags introduced
in Section VI-B. The following tests are all performed with
nonblocking synchronizations only, but with and without a flag
enabled. All the epochs host a single 1 MB put; and each
subsequent epoch in any given process is opened after the
previous one is closed.

A A A R (GATS): We consider a single origin O and two
targets T0 and T1. The origin opens an access epoch toward T0
first and then toward T1. The exposure of T0 is 1000 µs late,
leading to a Late Post situation. The observations of interest
are the overall latency of the second target epoch (T1) and the
cumulative origin latency. Figure 7 shows that when A_A_A_R
is ON, T1 does not suffer the delay of T0; and the cumulative
origin-side latency is just the latency of T0. For the origin,
A_A_A_R allows the second epoch to be overlapped with the
delay of the first one. When A_A_A_R if OFF, the delay of
T0 propagates to the origin, which then propagates it in chain
to T1.

A A A R (lock): We consider two origins O0 and O1 and
two targets T0 and T1. O1 requests the lock of T0 right after O0

gets it. Then O1 requests a subsequent lock from T1. Before
releasing the first lock, O0 works for 1000 µs in the epoch. The
observation of interest (Figure 8) is the cumulative duration of
both epochs of O1. When A_A_A_R is enabled, O1 completes
both epochs in about 1340µs, which is the latency of its first
epoch only, because the second epoch progresion occured out
of order and completed while the first epoch was still being
delayed. The delay as well as both epochs are serialized when
A_A_A_R is disabled.
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Fig. 8: Out-of-order lock epoch progression with A A A R
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Fig. 9: Out-of-order GATS epoch progression with A A E R

A A E R: The test setting comprises three processes P0,
P1, and P2. P0 is an origin and P1 a target. P2 behaves as
a target for P0 and then as an origin for P1, in that order.
P0 is 1000 µs late. Figure 9 shows that, by default, the
delay of P0 is transferred to P2 and then transitively to P1.
When P2 enables A_A_E_R, however, the progression of its
second epoch, meant for P1, is handled and completed out of
order. Thus, P1 completely avoids incurring the delay while
P2 overlaps it with its second epoch.

E A E R: The test setting is made of two origins O0 and
O1 and a target. O0 is 1000 µs late. The first exposure of the
target is meant for O0 and the second for O1. Figure 10 shows
that the delay of O0 is transitively transferred to O1 by default.
The cumulative latency experienced by the target is the sum
of that delay and the latency of both its epochs toward O0 and
O1. With E_A_E_R enabled, the delay does not propagate to
O1; and the target also overlaps it with its second epoch.

E A A R: The test setting comprises three processes P0,
P1, and P2. P0 is a target and P1 an origin. P2 behaves as an
origin for P0 and then as a target for P1. P0 is 1000 µs late.
Once again, unlike the default case, the activation of E_A_A_R
by P2 prevents the propagation of the delay of P0 to P1 and
allows the second epoch of P2 to overlap the delay, leading to
a lower cumulative latency for P2 (Figure 11).

B. Communication Pattern and Application Results

Comparison between the two blocking series (MVAPICH
and New) is not the purpose of this work; in fact, for
fairness, the nonblocking test series (provided by the new
implementation) will be compared with the blocking test series
of the new implementation. However, the experiments in this
subsection show that the New (blocking) series outperforms
MVAPICH, sometimes substantially. This observation deserves
a brief explanation. Compared with MVAPICH, our new
RMA progress engine performs some crucial optimizations.
For instance, RMA messages are reordered inside epochs in
order to minimize overall transfer times thanks to overlapping
between internode and intranode data transfers. Furthermore,
we issue right away the RMA transfers of any target that
becomes available. In comparison, after it reaches its epoch-
closing routine, MVAPICH waits for all internode targets to be
ready before issuing communication to any internode target;
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Fig. 10: Out-of-order GATS epoch progression with E A E R

0

500

1000

1500

ta1 ta1 tc

E_A_A_R off E_A_A_R on

0

500

1000

1500

2000

t1 t2

O
ve

ra
ll 

e
p

o
ch

 

la
te

n
cy

 (
m

s)

Epoch
origin P1

P2 (origin first 
then target)

Fig. 11: Out-of-order GATS epoch progression with E A A R

then all intranode targets must be ready before any intranode
communication is issued.

Dynamic Unstructured Massive Transactions: We re-
produce in this section the massively unstructured atomic
communication pattern described in Section IV-B. An In-
finiBand flow control issue prevents the new implementation
from scaling beyond 512 processes when there are large
numbers of simultaneously pending epochs. This issue is
implementation-related and can be fixed, given enough time.
The results (Figure 12) show that the nonblocking version
(“New nonblocking”) is consistently better than the blocking
version (“New”), and the nonblocking version with A_A_A_R
is better than both. The difference between the blocking and
nonblocking (without A_A_A_R) is not noticeable, but it does
reach a few thousand transactions per second. The difference
is small because the epochs are issued back to back and end
up being serialized inside the progress engine. That difference
would be more substantial if there were computations between
adjacent transactions. Rather than communication/computation
overlapping, the improvement opportunities of this commu-
nication pattern come mostly from contention avoidance, as
enabled by A_A_A_R. Specifically, A_A_A_R allows 184,422
(39%), 205,377 (20%), and 339,359 (16%) more transactions
per second than does the blocking test series in jobs of 64,
128, and 256 CPU cores, respectively. Because of the flow
control issue, that difference is only 47,263 transactions per
second (2%) with 512 CPU cores.

LU Decomposition: Figure 13 presents the performance
results of a lower-upper (LU) decomposition for solving square
systems of linear equations. We implemented a kernel of 1D
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Fig. 12: Massive unstructured atomic transactions
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Fig. 13: Performance evaluation by LU decomposition

LU decomposition by using GATS epochs. The algorithm does
cyclic mapping to ensure load balance and concurrency. For a
matrix of size m×m and for a job size n, each process gets
m/n matrix rows. Then when a row (in the upper triangle)
belonging to a process P gets updated, P broadcasts its
nonzero cells (one-sidedly) to the other n−1 peers. At fixed m,
when n grows, each process gets fewer and fewer m/n rows
to broadcast to larger and larger numbers (n−1) of peers; that
is, each process experiences less but heavier communications.
At fixed matrix size, these two conflicting effects of n have the
consequence of decreasing the overall execution time of LU
up to a certain optimal job size and then increasing it from
there on. In Figure 13(a) for matrices of 8k × 8k, with the
job increase steps used, the optimal job size is 128 processes.
In Figure 13(c) for matrices of 16k × 16k, the optimal size
is 256 processes. These observations show that the application
would not be executed in production environments beyond 128
processes and 256 processes, respectively, for 8k × 8k and
16k×16k matrices; nevertheless, we present the results for up
to 2,048 processes to show how the “New nonblocking” test
series compares with the “New” test series for a larger range
of job sizes.

The program has two kinds of communication/computation
overlapping: inside the epoch (exists in all three series) and
after the epoch is closed but not necessarily completed (exists
only in “New nonblocking”). The program offers considerable
room for the first kind of overlapping. In the blocking version
(“New”), however, that overlapping leads to the Late Complete
issue. The “New nonblocking” test not only eliminates the Late
Complete issue but also enables the second kind of overlapping
without generating any inefficiency; leading to performance
improvements of 50% (64 to 128 processes in Figure 13(a)
and Figure 13(c)). Figure 13(b) and Figure 13(d) show the
percentage of the overall execution times that the CPUs spend
in MPI communication calls. At fixed matrix size, one can
see that when the job size increases, the communication
percentages increase because of the decreased amount of
computation per process. This behavior leads to the shrinking
of the extent of the Late Complete issue and consequently

justifies the shrinking of the advantage provided by the “New
nonblocking” test series in Figure 13(a) and Figure 13(c) when
job sizes grow.

IX. RELATED WORK

The MPI specification offers considerable leeway to im-
plementers about when to force the waits in an epoch. In
particular, an access epoch opening synchronization call does
not have to block if the corresponding exposure epoch is not
opened yet. This freedom was used in [8], [9] to mitigate
the apparent effects of RMA synchronization by deferring
the actual internal execution of both synchronization and
communication to the epoch-closing routine execution. This
approach is termed lazy. In [13] a design of the fence epoch
was proposed where communication/computation overlapping
occurs inside the epoch. Since the proposal makes every
fence call blocking, the overlapping comes at the price of a
potentially substantial idleness at both opening and closing
of each epoch. Purely intranode RMA issues were addressed
in [14], [15]. An approach to the hybrid design of MPI one-
sided communication on multicore systems over InfiniBand
was presented in [16]. The work describes a way of migrat-
ing passive target locks between network atomic operations
and CPU-based atomic operations. The use of RDMA for
one-sided communications was presented in [17], [18], [19].
Designs of the computational aspects of MPI_ACCUMULATE
were proposed in [20], [21]. In [12], a strategy was proposed
to adaptively switch between lazy and eager modes for RMA
communications in order to achieve overlapping. An MPI-
3.0 RMA library implementation for Cray Gemini and Aries
systems was described in [22]. To the best of our knowledge,
however, none of the previous work tried to make the MPI one-
sided communication lifetime nonblocking from start to finish.
Thus, the work we present here pioneers entirely nonblocking
MPI one-sided synchronizations proposals and designs.

X. CONCLUSION AND FUTURE WORK

The blocking nature of MPI one-sided epoch-closing syn-
chronizations can lead to latency propagation to peers linked



in matching epochs. These issues are documented and cate-
gorized in six inefficiency patterns of which four could not
effectively be worked around. We introduce in this work a
new, previously undocumented inefficiency pattern. Then we
propose entirely nonblocking RMA synchronizations. We show
that all the four unaddressed inefficiency patterns as well as
the newly documented one are now solved with our proposed
one-sided communication synchronizations. The nonblocking
synchronizations lead to an increased potential for communi-
cation/computation overlapping as well as delay mitigation via
communication/delay overlapping. The nonblocking epochs
also allow new use cases of HPC communications, such as
those that require multiple epochs to be issued back to back,
to be more efficiently handled. Since nonblocking synchro-
nizations and epochs bring additional complexities, we present
their semantics, the hazardous situations, and the behaviors to
expect from the progress engine.

As future work, we intend to investigate the possibility
of enabling the progress engine optimization flags for fence
epochs. We are also investigating how large-scale distributed
rule engines can benefit from nonblocking MPI RMA epochs
for fast pattern matching and update of fact databases. More-
over, we are interested in observing the behavior of the
nonblocking synchronizations on petascale-level machines.
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